Forschungsbetrug im eigenen Labor vermeiden? — Ein paar Daumenregeln.

26. Mai 2021 von Laborjournal

Kürzlich fragte der Zürcher Neuropathologe und Prionen-Spezialist Adriano Aguzzi auf seiner Facebook-Seite:

Können wir bitte eine aufgeschlossene, ehrliche und tabufreie Diskussion über wissenschaftlichen Betrug führen? Wie man ihn verhindern kann, und wie man damit umgehen sollte?

Und er startete gleich selbst:

Ich fange mal selber an und behaupte, dass jeder, der denkt, so etwas könne in seinem Labor nicht passieren, sich besser auf böse Überraschungen gefasst machen soll. In meinem Labor ist es jedenfalls passiert.

Insgesamt kamen unter dem Posting noch 50 weitere Kommentare zusammen, die wir hier natürlich weder alle referieren noch zusammenfassen wollen. Einer allerdings gefiel uns besonders gut. Giovanni Giuliano, Forschungsdirektor an der Nationalen Agentur für neue Technologien, Energie und nachhaltige wirtschaftliche Entwicklung (ENEA) in Rom, gab folgendes zu bedenken:

Ein paar Daumenregeln, die in meinem Fall funktioniert haben:

a) Datenmanipulation ist üblich (das Löschen „fehlgeschlagener Proben“ oder gänzlich „gescheiterter Experimente“ aus einem Datensatz ist die Norm, und keineswegs die Ausnahme).

b) Ein veröffentlichter Datensatz kann definitionsgemäß nicht das Universum aller möglichen Variationen repräsentieren, sondern nur diejenigen der Replikationen, die von einer bestimmten Person in einem bestimmten Labor durchgeführt werden.

c) Diese Variation sollte zumindest von einer anderen Person im selben Labor reproduzierbar sein, idealerweise jedoch von einer anderen Person in einem anderen Labor.

d) Wenn die Daten nicht zu deiner Hypothese passen, sei klug: Finde eine bessere Hypothese!

e) Sichere dir Kopien der Primärdaten und lasse sie von neuen Mitarbeitern in deinem Labor bei deren Projektstart erneut analysieren. Dies wirkt eine starke Abschreckung gegen Manipulation.

f) Biologie ist komplex. Egal wie klug du bist, keine biologische Hypothese passt zu all deinen Daten. Versuche demnach unabhängig davon das zu veröffentlichen, was du für gute Daten hältst – auch wenn sie nicht zu deiner Hypothese passen. Jemand anders wird dann entweder zeigen, dass deine Methodik falsch ist, oder eine bessere Erklärung für die Daten finden.

g) Wir sind alle Sünder: Wenn du jemanden dabei erwischst, wie er das Datenpolieren übertreibt, lasse sie oder ihn wissen, dass es um mehr geht als nur um eine Frage der Moral – es geht um Intelligenz! Wie es auf dem Apollo-Tempel in Delphi geschrieben steht: Μηδὲν ἄγαν (Nichts im Übermaß!).

Das lassen wir jetzt mal so stehen. Aber vielleicht weiß ja jemand noch die eine oder andere weitere „Daumenregel“…

Ralf Neumann

 

Info
Info
Info

Info

Info

Optimiert in Form & Funktion. epT.I.P.S. ® Box 2.0! mehr

Info

Info

Schnell zur gewünschten Funktion wischen u. das Notwendige immer im Blick: die Touchscreen-Bedienung bietet viele Vorteile. mehr

Info

Info

Info

Auf der Suche nach interessanten Tipps und Tricks für den Laboralltag? Expertenwissen nur einen Klick entfernt! mehr

Info